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RECONSTRUCTING THE EFFECTIVE COEFFICIENT OF THERMAL 

CONDUCTIVITY OF ASBESTOS--TEXTOLITE FROM THE 

SOLUTION OF THE INVERSE PROBLEM 

E. A. Artyukhin, V. E. Killikh, 
and A. S. Okhapkin UDC 536.212.3 

The article examines the practical application of the algorithm for solving inverse 
problems in processing experimental data. 

The intense development of the theory and the increasing range of application of the 
methods of solving inverse problems of heat exchange [i] led to their widespread use in 
thermophysical research [2-5]. Such an approach in the investigation Of the thermophysical 
characteristics of high-temperature composite materials under nonsteady conditions solves 
the problem of modeling the structure of the material and the nature of how internal pro- 
cesses pro=eed [6], and moreover, it makes it possible to determine these characteristics 
for mathematical models in which their application is assumed. 

Sometimes the problem of determining the effective values of thermophysical character- 
istics may be examined; the use of these characteristics makes it possible to generalize in 
fairly simple form the results of experimental investigations. Furthermore, such charac- 
teristics may be used for calculating temperature fields of coatings in the range of change 
of external conditions that is of interest to the researcher. 

The principal object of the present work consists in investigating the possibility of 
the practical application of the methods of inverse problems for determining the thermo- 
physical characteristics of composite materials under nonsteady conditions. 

We analyze the errors connected with thermocouple temperature measurements in high- 
temperature decomposing material, and the accuracy of the obtained results is evaluated. 
For processing the experimental data we used the algorithm for solving inverse coefficient 
problems of heat conduction explained in [2]. 

We analyzed a model of an unbounded flat plate in which at four points thermocouple 
measurements were carried out. 

The temperature measurements at the outer points of the examined region were used as 
thermal boundary conditions. The input data for solving the inverse problem were the 
temperature measurements at the inner points of the region. 
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The inverse problem was formulated in the following manner. We had to determine the 
functions I(T) and T(x, T) from the conditions 

--_aT a. (Z(T) aT ) c(T) O~, Ox ~ O < x < b ,  O < T ~ r m ,  

T(x, O)= To, O ~ x ~ b ,  

T(x~, x)=[i('~), i =  1, 4, x l = O < x 2 < x a < x ~ = b ,  

( l )  

(2) 

(3) 

where c(T), fi(%), i = i, 4 are known functions. 

As objective function we examined the rms discrepancy 

I =  ~ f'~[T(xi, 74 ;~(T))-- fi('c)]2 d'r, 
i ~ 2  0 

(4) 

where Ti(xi, z, I(T)), fi(z) are the temperatures at points x.z at the instant z, calculated 

by using (1)-(3) and measured, respectively. On account of the homogeneity of (i) the region 

of determining the function %(T) was fixed in the form of the interval D = [Tmin, Tmax]. 

The sought function I(T) was represented by using cubic B-slines on the grid 

m = {Th = T~i~ + kAT, k = - -  2, --1 . . . . .  m +. 3; 
,n H- 1 

AT = (Tmax-- Tmin)/m}; Z ( T ) =  ~.i ZhBh(T). (5) 
h=- - I  

H e r e ,  Bk(T ) = Bo(T -- kAT) i s  t he  c u b i c  B - s p l i n e  [ 7 ] .  

In  a c c o r d a n c e  w i t h  [ 2 ] ,  t h e  b o u n d a r y  p r o b l e m  ( 1 ) - ( 3 )  was p r e s e n t e d  i n  t h e  fo rm o f  t h e  
problem of heating an unbounded multilayered plate with the same thermophysical properties 
of the layers and zero contact resistance between them. In the case under examination the 
number of layers was equal to three. 

With the aid of the notion (5) the formulated inverse problem reduced to seeking the 
(m + l)-dimensional vector ~= {%0,~i ..... %m} from the condition of minimum of the functional 

(4) with the constraints (1)-(3). Minimization of the functional was carried out by the 
method of conjugate gradients [8]. The approximations of the sought parameters were deter- 
mined by the formulas 

~F + ~ = z ~  ) + ~ ( ~ g F  >, k = O , m ,  p=O,  1,2 . . . .  , (6) 

h = 0  k = O  

The expression for the components of the vector of the gradient of the objective func- 
tional (4) was obtained with the aid of the solution of the problem conjugate to the initial 
one, and it had the form 

i [ o r, {or, V dB (r)] a i+1 S ~h (x, "v) Bh (T) + d'cdx, 
. [ Ox 2 \ ax ] dT  

k=O, m. 

(7) 
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Fig. i. Solution of the model problem: a) recon- 
struction of the temperature dependence of the 
thermal conductivity [i) exact value; 2) recon- 
structed values; 3) initial approximation]; b) 
temperature at the points of mounting the thermo' 
couples [I) exact values; 2) reconstructed values; 
3) boundary conditions; 4) experimental values]. 
m = 323~ T = 2159~ ~ = 1.858 W/(m" 
~min max max 
OK). T, sec. 

o o,~ o,8 ~ o e 12 

Fig. 2. Processing of the experimental data: a) 
reconstructed temperature dependence of the thermal 
conductivity; b) temperature at the points of 
mounting the thermocouples [I) experimental values; 

2) reconstructed values]. Tmi n 323~ Tma x 

2159~ ~ = 1.033 W/(m'~ 
max 

For the linear evaluation of the depth of descent of ~ at the p-th iteration we used the 
solution of the boundary problem for the temperature increment @i.(x, T). In this case in the 
calculation of ~ we have from the condition 

min (~(P) -}- ~(P) G(P)), where G(P) = {gF)}, k = O, m, 

o ~ ( P ) - -  ~ 2  o 

j' [ ~  (x, "012 dz 
~ = 2  0 

(8) 

All boundary problems were solved numerically by using the monotonic implicit approxi- 
mation procedure [9]. The calculations were carried out with the difference grid n "n = 

X T 
41"51. 

The results of non-steady-state temperature measurement were processed in three stages: 
mathematical modeling for evaluating the certainty of the reconstructed thermal conductivity 
of asbestos textolite with the thermocouples as arranged in the experiment, processing of the 
experimental data, and evaluation of the accuracy of the obtained results when there were 
errors of the measured temperatures. 

1283 



6 

o o/ ! z  d 

k 

_ _  

-! 
+ 2 .,n'" ~ 

q~ qa ? 

Fig. 3 Fig. 4 

Fig. 3. Dependence of the error of temperature measurement in- 
side the specimen on the diameter of the thermoelectrode: i) 
calibration of the loop and interpretation of the oscillogram; 
2) calibration of the thermocouples; 3) distortion of the 
temperature field by the thermocouple; 4) shunting of the thermo- 
couple by an electrically conducting coke layer; 5) total error. 
Thermocouple VR5/VR20, I/d = 150, dT/dT = 150~ The = 1800~ 

Tmeas = 2300~ ~T/Tmeas, %; d, mm. 

Fig. 4. Evaluation of the reconstructed dependence of the thermal 
conductivityz i) nominal value; 2) distortion of the temperature 
with normal distribution (Ema X = +0.07 T); 3) x2 = 0.65"10 -3 m, 

x3 = 1.45"10 -3 m; 4) x2 = 0.55"10 -3 m; x~ = 1.55"10 -3 m (~max = 

1.033 W/(m-~ 

In the mathematical modeling the exact values of the "measured" temperatures f.(T), i = 
i 

2, 3 were obtained from the solution of the direct problem (1)-(3) for which we used as 
boundary conditions the experimentally measured temperatures at the points xl = 0 and x4 = 
2"10 -3 m. The calculated temperature dependences at the points where the thermocouples were 
mounted (x2 = 6"10 -4 m, x3 = 1.5"10 -3 m) were the input data for solving the inverse problem 
of determining the "unknown" function %*(T). As the exact value of the reconstructed thermal 
conductivity we considered the polynomial 

~,* (T )  = 5 . 9 5 . 1 0  -7 T 2 - -  6 , 3 3 . 1 0  -a  T 4-  0 , 4 2 3  [ W / m "  deg K] 

In the calculations we used the temperature dependence of the coefficient of volumetric 
heat capacity of asbestos textolite presented in [6]. 

Figure 1 shows the exact dependences and the dependences reconstructed from the solution 
of the inverse problem in solving the model example: %(T) and T(xi, T), i = 2, 3. The num- 

ber of sections of the spline-approximation was taken as four. For the sake of comparison, 
Fig. i presents the experimental temperature values at the points where the thermocouples are 
mounted. The results of processing the experimental data are shown in Fig. 2. 

The temperature measurements were carried out in a model of asbestos--textolite; the de- 
sign of its working part is shown diagrammatically in Fig. 2. High-temperature tungsten-- 
tungsten-rhenium thermocouples VR5/VR20, with diameter d = 1"10 -4 m, butt-welded in an inert 
atmosphere, were placed in the plane of the oblique section of the working part of the model. 

Evaluations of [i0] showed that it is preferable to use thermocouples without electri- 
cally insulating coating because the use of presently available coatings at temperatures 
T > 1800~ is inefficient and causes considerable distortion of the temperature field in the 
specimen. 
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The ratio of the length of the isothermal part of the thermocouple to its diameter was 
~/d = 150. The elements of the model were glued together with phenol resin, and then the 
coordinates of embedding the thermocouples were determined from x-ray photographs. To pre- 
vent heat removal, the lateral surface of the working part of the model was heat-insulated. 

In the analysis of the accuracy of temperature measurements in the experiment, we used 
the results explained in [i0]. 

Figure 3 shows the magnitudes of the errors of measuring the temperature of 2300~ in 
high-temperature composite material in dependence on the diameter of the thermoelectrode for 
the thermocouple VR5/VR20. The same figure also gives the total error of temperature measure- 
ment, which for the experiment under consideration may amount to 6-7%. 

To evaluate the possible magnitude of the error of the temperature dependence of the 
effective coefficient of thermal conductivity of Textolite, reconstructed from the solution 
of the inverse problem, mathematical modeling was carried out. As the nominal thermal con- 
ductivity we used the dependence %(T) obtained in processing the experimental results; as 
input data we used the reconstructed values of the temperatures at the points of mounting 
the thermocouples. The errors in the experimental functions f.(T), i = 2, 3, were simulated 

I 

by a random number transducer with normal distribution of the probability density of the dis- 
tortions with an error not exceeding 7% of the actual temperature. The results of the 
modeling are presented in Fig. 4. 

Since in the analysis of the errors of temperature measurements we did not take into 
account any possible errors in determining the coordinates of the thermocouple mounting, we 
evaluated the maximum possible deviation of the temperature dependence of the thermal con- 
ductivity of asbestos--textolite from the one obtained in processing the experimental results. 
It was assumed that the errors in determining the position of the thermocouples amount to 
Ax. = +5"10 -5 m and that they have different signs. As input data we used the experimen- 

1 

tally measured temperatures f.(T), i = 2, 3. The obtained results are presented in Fig. 4. 
i 

Processing of the experimental data and an analysis of the accuracy of the obtained re- 
sults showed that the approach based on solving inverse coefficient problems of heat conduc- 
tion may be used successfully in processing the results of real thermophysical experiments. 

NOTATION 

c, volumetric heat capacity; %, thermal conductivity; T, temperature; x, space coordi- 
nate; T, time; Tm, b, right-hand boundary value of time and space intervals, respectively; 

f.(T) input temperatures; I, functional; 0, temperature increase; 4, conjugate variable; 
1 

= (T--To)/Tmax--Tmin) , dimensionless temperature~ % = %/%max' dimensionless thermal conduc- 

tivity; nx, n T number of nodes in difference approximation with respect to the space and 

time coordinates, respectively; ~, B, parameters of the method of conjugate gradients; p, 

number of iteration. Subscripts: min, minimal; max, maximal value; 0, initial value; be, 

beginning of electrical conductance; meas, measured value. 

i. 

2. 

. 
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CONSTRUCTION OF EXPLICIT FUNCTIONS FOR DETERMINING 

THE COEFFICIENTS OF INTERNAL HEAT AND MASS TRANSFER 

FROM THE DATA OF MEASUREMENTS IN NONSTATIONARY 

REGIMES 

G. T. Aldoshin, A. S. Golosov, 
V. I. Zhuk, and D. N. Chubarov UDC 536.24 

For a number of laws governing the variation of the characteristics of internal heat 
and mass transfer with respect to a spatial variable, we derive explicit functions 
relating them to the results of measurements of nonstationary temperatures or other 
potentials. 

Many physical processes can be described by partial differential equations of the type 
represented by the nonstationary heat-conduction equation with coefficients which depend on a 
spatial variable. It is therefore of great practical interest to construct effective calcula- 
tion algorithms whereby the data of measurements of some transfer potentials (for example, 
temperatures) can be used for estimating the parameters determining the character of the 
spatial variation of the coefficients involved. In some cases, exact explicit functions 
sufficiently suitable for practical realization can be obtained by using the method employed 
in [I, 2], namely, an analysis of the properties of the analytic solutions of the problem in 
the space of Laplace mappings. 

In the case when it is permissible to describe a real process by a one-dimensional para- 
bolic operator with coefficients dependent on a spatial variable, of the form 

r -  k a_a X(r ) r  ~ aT ( r ,  T) - - c ( r )  aT( r ,  T) , (1)  
Or Or a~ 

where k = 0, i, 2 for plane, cylindrical, and spherical fields, respectively, it is possible 
for a number of specific laws of variation of ~ and c to obtain exact analytic solutions [3]. 
In particular, in the space of Laplace mappings a solution of the form 

1 

i l I i AI_  1 - -  

m m 

I Ira l} E ~ �9 + B K  1 E 2 (2 )  
m n z  
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